Part Number Hot Search : 
3216C S08AW16A TA1007A 49BV1 X0403BF 00R12K TLPGE CA506
Product Description
Full Text Search
 

To Download IRG7PC28U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 09/02/11 IRG7PC28Upbf descriptionthis igbt is specifically designed for applications in plasma display panels. this device utilizes advanced trench igbt technology to achieve low v ce(on) and low e pulse tm rating per silicon area which improve panel efficiency. additional features are 150c operating junction temperature and high repetitive peak currentcapability. these features combine to make this igbt a highly efficient, robust and reliable device for pdp applications. features  advanced trench igbt technology  optimized for sustain and energy recovery circuits in pdp applications  low v ce(on) and energy per pulse (e pulse tm ) for improved panel efficiency  high repetitive peak current capability  lead free package 
  e c g n-channel g c e gate collector emitter  v ce min 600 v v ce(on) typ. @ i c = 40a 1.70 v i rp max @ t c = 25c 225 a t j max 150 c key parameters g c e to-247ac c absolute maximum ratings parameter units v ge gate-to-emitter voltage v i c @ t c = 25c continuous collector current, v ge @ 15v a i c @ t c = 100c continuous collector, v ge @ 15v i rp @ t c = 25c repetitive peak current p d @t c = 25c power dissipation w p d @t c = 100c power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature for 10 seconds mounting torque, 6-32 or m3 screw n thermal resistance parameter typ. max. units r jc junction-to-case  CCC 0.78 r cs thermal resistance, case-to-sink  0.24 CCC c/w r ja junction-to-ambient CCC 40 300 -40 to + 150 10lb  in (1.1n  m) 160 64 1.3 max. 33 225 61 30 downloaded from: http:///

 2 www.irf.com    half sine wave with duty cycle <= 0.02, ton=1.0 sec.  r is measured at t j of approximately 90   pulse width 400 s; duty cycle 2%. electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv ces collector-to-emitter breakdown voltage 600 CCC CCC v v (br)ecs emitter-to-collector breakdown voltage 15 CCC CCC v ? v ces / ? t j breakdown voltage temp. coefficient CCC 0.57 CCC v/c CCC 1.25 CCC CCC 1.42 CCC 1.70 1.95 v CCC 1.96 CCC CCC 2.97 CCC CCC 1.75 CCC v ge(th) gate threshold voltage 2.2 CCC 4.7 v ? v ge(th) / ? t j gate threshold voltage coefficient CCC -11 CCC mv/c i ces collector-to-emitter leakage current CCC 0.5 20 CCC 30 CCC a CCC 90 CCC 305 CCC i ges gate-to-emitter forward leakage CCC CCC 100 na gate-to-emitter reverse leakage CCC CCC -100 g fe forward transconductance CCC 55 CCC s q g total gate charge CCC 70 CCC nc q gc gate-to-collector charge CCC 25 CCC t d(on) turn-on delay time CCC 30 CCC i c = 40a, v cc = 400v t r rise time CCC 35 CCC ns r g = 22 , l=100 h t d(off) turn-off delay time CCC 260 CCC t j = 25c t f fall time CCC 145 CCC t d(on) turn-on delay time CCC 25 CCC i c = 40a, v cc = 400v t r rise time CCC 40 CCC ns r g = 22 , l=100 h t d(off) turn-off delay time CCC 280 CCC t j = 150c t f fall time CCC 320 CCC t st shoot through blocking time 100 CCC CCC ns e pulse energy per pulse j human body model machine model c ies input capacitance CCC 1880 CCC c oes output capacitance CCC 75 CCC pf c res reverse transfer capacitance CCC 45 CCC l c internal collector inductance CCC 4.5 CCC between lead, nh 6mm (0.25in.) l e internal emitter inductance CCC 7.5 CCC from package v ge = 15v, i ce = 160a static collector-to-emitter voltage v ce(on) v ge = 15v, i ce = 40a, t j = 150c v ge = 15v, i ce = 40a CCC 930 CCC v ce = 25v, i ce = 40a v ce = 400v, i c = 40a, v ge = 15v v cc = 240v, r g = 5.1 , t j = 25c CCC 770 CCC v cc = 240v, v ge = 15v, r g = 5.1 v ce = v ge , i ce = 250 a v ce = 600v, v ge = 0v v ce = 600v, v ge = 0v, t j = 150c v ge = 30v v ge = -30v v ce = 600v, v ge = 0v, t j = 100c ? = 1.0mhz and center of die contact v ce = 600v, v ge = 0v, t j = 125c l = 220nh, c= 0.40 f, v ge = 15v l = 220nh, c= 0.40 f, v ge = 15v v cc = 240v, r g = 5.1 , t j = 100c conditions v ge = 0v, i ce = 1.0ma reference to 25c, i ce = 1.0ma v ge = 15v, i ce = 70a v ge = 15v, i ce = 12a v ge = 15v, i ce = 24a v ge = 0v, i ce = 1.0a esd class h1c (2000v) (per jedec standard jesd22-a114) class m4 (425v) (per eia/jedec standard eia/jesd22-a115) v ce = 30v v ge = 0v downloaded from: http:///

 www.irf.com 3 fig 1. typical output characteristics @ 25c fig 3. typical output characteristics @ 125c fig 4. typical output characteristics @ 150c fig 2. typical output characteristics @ 75c fig 5. typical transfer characteristics fig 6. v ce(on) vs. gate voltage 0 2 4 6 8 10 v ce (v) 0 25 50 75 100 125 150 175 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0 2 4 6 8 10 v ce (v) 0 25 50 75 100 125 150 175 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0 2 4 6 8 10 12 14 v ce (v) 0 25 50 75 100 125 150 175 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0 2 4 6 8 10 12 14 v ce (v) 0 25 50 75 100 125 150 175 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 24681 0 v ge , gate-to-emitter voltage (v) 0 25 50 75 100 125 150 175 200 i c e , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) t j = 25c t j = 150c 0 5 10 15 20 v ge , voltage gate-to-emitter (v) 1.2 1.4 1.6 1.8 2.0 v c e , v o l t a g e c o l l e c t o r - t o - e m i t t e r ( v ) t j = 25c t j = 150c i c = 20a downloaded from: http:///

 4 www.irf.com fig 7. maximum collector current vs. case temperature fig 8. typical repetitive peak current vs. case temperature fig 10. typical e pulse vs. collector-to-emitter voltage fig 9. typical e pulse vs. collector current fig 11. e pulse vs. temperature fig 12. forrward bias safe operating area 25 50 75 100 125 150 case temperature (c) 0 50 100 150 200 250 r e p e t i t i v e p e a k c u r r e n t ( a ) ton= 2 s duty cycle <= 0.05 half sine wave 160 170 180 190 200 210 220 230 240 i c , peak collector current (a) 450 500 550 600 650 700 750 800 850 900 950 e n e r g y p e r p u l s e ( j ) v cc = 240v l = 220nh c = variable 100c 25c 200 205 210 215 220 225 230 235 240 v ce, collector-to-emitter voltage (v) 450 500 550 600 650 700 750 800 850 900 950 e n e r g y p e r p u l s e ( j ) l = 220nh c = 0.4 f 100c 25c 20 40 60 80 100 120 140 160 t j , temperature (oc) 400 500 600 700 800 900 1000 1100 e n e r g y p e r p u l s e ( j ) v cc = 240v l = 220nh t = 1 s half sine c= 0.4 f c= 0.3 f c= 0.2 f 1.0 10 100 1000 v ce (v) 1 10 100 1000 i c ( a ) 1msec 10 sec 100 sec tc = 25c tj = 150c single pulse 25 50 75 100 125 150 t c (c) 0 10 20 30 40 50 60 70 i c ( a ) downloaded from: http:///

 www.irf.com 5 fig 13. typical capacitance vs. collector-to-emitter voltage fig 14. typical gate charge vs. gate-to-emitter voltage fig 16. maximum effective transient thermal impedance, junction-to-case fig. 15 - typ. energy loss vs. i c t j = 150c; l = 250 h; v ce = 400v, r g = 22 ; v ge = 15v 0 100 200 300 400 500 v ce , collector-toemitter-voltage(v) 10 100 1000 10000 100000 c a p a c i t a n c e ( p f ) cies coes cres v gs = 0v, f = 1 mhz c ies = c ge + c gd , c ce shorted c res = c gc c oes = c ce + c gc 0 1020304050607080 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e , g a t e - t o - e m i t t e r v o l t a g e ( v ) v ces = 120v v ces = 300v v ces = 400v i c = 40a 0 102030405060708090 i c (a) 0 1000 2000 3000 4000 5000 6000 e n e r g y ( j ) e off e on 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.01204 0.0000120.25428 0.000249 0.33102 0.002663 0.18356 0.016738 downloaded from: http:///

 6 www.irf.com fig 16a. t st and e pulse test circuit fig 16b. t st test waveforms fig 16c. e pulse test waveforms 1k vcc dut 0 l fig. 17 - gate charge circuit (turn-off) driver dut l c vcc rg rg b a ipulse energy v ce i c current pulse a pulse b t st downloaded from: http:///

 www.irf.com 7 to-247ac package is not recommended for surface mount application. 

 
   
 
 
          
 
                 !"#! $%&'  
  !! 
 $$&'(  )*!! +,-.-/) ) 0* $  &   
'1'2 data and specifications subject to change without notice. this product has been designed for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/11 the specifications set forth in this data sheet are the sole andexclusive specifications applicable to the identified product, and no specifications or features are implied whether by industry custom, sampling or otherwise. we qualify our products in accordance with our internal practices and procedures, which by their nature do not include qualification to all possible or even all widely used applications. without limitation, we have not qualified our product for medical use or applications involving hi-reliability applications. customers are encouraged to and responsible for qualifying product to their own use and their own application environments, especially where particular features are critical to operational performance or safety. please contact your ir representative if you have specific design or use requirements or for further information. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRG7PC28U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X